德國VSEAHM02流量計參數資料同時我們還經營:由金屬管浮子流量計的工作原理我們知道:流體的流量與浮子在錐管中的高度有關,因此要實現對流量的測量,實際上取決于對浮子位置的測量?! ”驹O計中采用美國公司生產的非接觸式角位移磁阻傳感器HMC1501代替傳統的接觸式角度傳感器,HMC1501可以測量從磁鐵發出的磁場的方向角?! ≡O計中將一條形磁鐵置于磁阻傳感器上方,令磁阻傳感器與錐管間距離為L,傳感器距錐管底部高度為H,如圖2.3所示?! ‘敻∽游挥诟叨菻處時,小磁鐵的轉角為0。當流量變化時,浮子上下移動,其內嵌磁鋼也隨之上下移動,此時,置于磁阻傳感器正上方的條形磁鐵受到磁場作用發生轉動,如圖2.4,轉動的角度即與浮子位置有關?! ∮缮蠄D可見當磁鐵轉過角度為θ時,金屬管浮子流量計浮子在錐管中的位置h=H+Ltgθ,則根據式1.9可得:金屬管浮子流量計的安裝應嚴格按照說明書中的有關技術要求去做,并注意以下幾個問題: 1.金屬管浮子流量計在安裝時應留有足夠的空間,進口應有5倍管道直徑以上的直管段,出口段為250mm,安裝位置應選擇在沒有震動、便于觀察和維修的場所。 2.為保證在任何時候測量管內都充滿料液,金屬管浮子流量計應安裝在上料管的垂直段,液體流向為由下而上,不得倒流。為了便于檢查、修理和更換,安裝時采用聯接旁通,并且在金屬管浮子流量計下側留有清洗口。 3.由于在管道吹掃時有些鐵銹、焊漬清洗不凈,有時介質中含有鐵磁顆粒,應在入口處安裝磁過濾器以避免這些雜質會被吸附在浮子上使浮子卡住。 4.若金屬管浮子流量計管徑小于工藝管道管徑,應在LZ兩端安裝漸縮管,然后和工藝管道相連。 5.為了提高整個測量系統的抗干擾技術性能,信號和電源電纜要分開敷設,分別套在鋼管內,尤其要遠離動力電纜,信號電纜兩接頭的外露部分要保持非常短。 6.為保證測量精度,消除外界干擾,金屬管浮子流量計的接地線采用不小于4mm2的銅線與大地相連,埋設深度在1m左右。電磁流量計應用中主要存在以下幾點不足:(1)電磁流量計井下精確定位問題。由于儀器本身沒有深度定位裝置,僅器下入深度的計量是靠絞車上的深.度計數器來完成。深度計數器計量結果的精度不但與計數器本身有關,而且還與工作環境有關。如果深度誤差太大,測量結果就失去意義。因此,深度校正是現場測試的一個關鍵問題。(2)管徑變化對測量結果的影響。通常應用的電磁流量計是中心流速式的,僅器的標定是在特制的管道中完成的,如果測量環境與標定環境不同,就會出現測量誤差。以內流式儀器為例,若它在內徑為φ62mm光油管中標定,在內徑為φ59mm的涂料油管中測量時就會引入最大15.28%的誤差。這是系統誤差,因此在儀器測量過程中要搞清楚被測管道的內徑,解釋資料時要扣除因管徑變化引起的測量誤差。大量實際測量數據表明,由管徑變化引起的誤差都在10%以內。(3)電磁流量計的標定問題。儀器是用清水標定的,若注,入介質改為污水或其它非清水介質時會對測量結果產生什么樣的影響,也是應用中要考慮的一個問題。在實際應用中,常常需要在現場對儀器進行標定,且要保證標定結果的準確性。(4)不能連續測量。電磁流量計如果能連續測量管柱內的流動剖面,就能直觀地反映出整個井筒內的吸水情況,這樣有利于測井資料的解釋。由于結構設計上的缺陷,電磁流量計目前還不能完全實現連續測量。1)測量電磁流量計勵磁線圈的電阻值,以確定勵磁線圈是否有匝間短路(線路編號“7”和“8”之間的電阻),電阻值應在30歐姆之間和170歐姆。如果電阻與工廠記錄相同,則認為線圈良好,并且不間接評估電磁流量計傳感器的磁場強度。2)測量勵磁線圈對地的絕緣電阻(測量編號“1”和“7”或“8”),以確定傳感器是否潮濕,電阻值應大于20兆歐。3)測量電極和液體之間的接觸電阻(測量數字“1”和“2”和“1”和“3”),并間接評估電極和襯里層表面的一般狀況。如果電極表面和背襯層附著到沉積層,則沉積層是導電的還是絕緣的。它們之間的電阻應在1千歐和1兆歐之間,線號“1”和“2”以及“1”和“3”的電阻值應大致對稱。4)關閉管道上的閥門,當電磁流量計充滿液體且液體不流動時,檢查整個機器的零點。根據需要進行適當調整。5)檢查信號線和激勵線各芯線的絕緣電阻,檢查屏蔽層是否完好。6)使用GS8校準儀測試電磁流量計轉換器的輸出電流。當給定零流量時,輸出電流應為:4.00 mA;當給定100%流量時,輸出電流應為:20.00 mA。輸出電流值的誤差應優于1.5%。7)測試勵磁電流值(轉換器端子“7”和“8”之間),正負勵磁電流應在規定范圍內,約為137(5%)mA。1.煤漿的磨損大,所以電磁流量計采用耐磨的ETFE襯里”的觀點不準確,ETFE主要解決了與金屬的附著問題。雖然ETFE的原料便宜,但其目前的處理工藝復雜,用它來制作襯里,成本比PFA還高,且沒有表征ETFE的.耐磨性優于PTFE的佐證。2.采用低噪聲電極,所以波動小”的觀點不準確。電極的形狀的確與噪聲大小相關。由于原進口流量計的電極在某煤化I企業有結垢現象,經常需要把流量計拆下來用晶相砂紙打磨電極,而上海威爾泰采用自清潔電極(即尖狀電極),有效地解決了結垢問題。實際應用表明,雖然采用自清潔電極流量計的平穩性比采用球面電極的平穩性稍差,但也沒有出現過異常波動。所以,我們認為,在解決煤槳流量輸出異常波動方面,低噪聲電極并非關鍵技術。3.原進口流量計安裝要求低,‘前5D后2D'就行”的觀點不準確。在實驗室標定時,要求直管段比較長(達到10D);在應用中,-般“前5D后3D”就足夠了,這并非僅僅適用于進口流量計。如果縮徑,直管段要求還可以進一步減小。另外,現階段的煤漿流量計,基本沒有投閉環控制的,對于精度的要求不是很高,關鍵是保證安全連鎖處于有效狀態,以避免異常波動引起誤跳車。4.原進口流量計流速大小對流量的影響很小,適用0.3m/s的流速"的觀點不準確。這種說法有很大的誤導作用。實際應用經驗表明,當流速較低時,尤其是當流速低于0.5m/s時,煤漿流量計容易波動。因此,這種觀點不準確。5.單純縮徑"的觀點不準確。我們曾經把管道縮徑,安裝較小口徑的流量計,實際使用效果卻不如采用本文所提的方案。一方面,由于涉及管道改造、高壓法蘭以及壓力容器級別的焊接,綜合成本也不低;另一方面在管道上縮徑,小口徑長度會遠大于在電磁流量計上縮徑,導致壓損增大,再加.上轉換器未替換,很多結果不可預知。6.原進口流量計因為業績多,所以風險小”的觀點不準確。業績多和業績好是兩個概念,二者沒有因果聯系。由于歷史的原因,原進口流量計市場占有率比較高,好的業績雖然多,但差的業績也有。一旦波動引起誤跳車,損失是很大的。據不完全統計,因為煤漿流量計波動引起誤跳車,200000t甲醇生產線一次損失約為300000元;600000t甲醇生產線,誤跳車一次的損失約為800000元。這也是質量好的煤漿流量計價格居高不下的原因之一。我們曾經使用兩種品牌的進口流量計,八個月就壞的情況也出現過,-年壞三套的情況也發生過。1、根據工藝設計資料和實際情況確認使用流量范圍,在計算基礎上確定流量計的口徑。若渦街流量計選型過大,管道內介質的流速低于流量計工作的下限值,就會產生小流量時輸出信號不穩定,大流量時輸出信號穩定。2、流量計附近有大功率的電機或強電場時,容易引起干擾信號,有可能管道內無介質流通,但僅表有流量顯示。動力線同流量計信號輸出線并排走向靠近時,有可能使流量計輸出信號偏小。管道內有正常流量,但傳感器輸出頻率偏小很多。33流量計應單獨接地,若接地不良,或管道振動.大,而引入干擾信號就會產生管道內無流量,但傳感器有輸出信號。3、流量計應單獨接地,若接地不良,或管道振動.大,而引入干擾信號就會產生管道內無流量,但傳感器有輸出信號。4、流量計調節閥門應裝在流量計下游,若閥門裝在流量計上游,在小流量時產生射流,會引起流量值的偏差和穩定性。5、介質溫度小于150℃時選一體型,高于150℃時或環境溫度、溫度都比較高時,應選用分體型。6、渦街流量計投用前,對管道應進行清洗,以沖掉管道內的鐵銹、焊渣等雜物,防止擊壞儀表。德國VSEAHM02流量計參數資料流量計選型時應考慮很多因素,如儀表性能流體特性、安裝要求環境條件以及價格因素等。其中對計量對象即燃氣的確切了解非常重要,這往往需要選型設計人員和計量管理人員進行深入細致的調查。(1)流量計性能方面:精確度.重復性.線性度、范圍度、壓力損失、上下限流量、信號傳輸特性.響應時間等;(2)流體特性方面:流體壓力、溫度、密度、粘度、潤滑性.化學性質磨蝕、腐蝕、結垢、臟污、氣體壓縮系數、等熵指數比熱容聲速、混相流、脈動流等;(3)安裝條件方面:管道布置方向、流動方向、流量計上下游直管段長度、管徑、維護空間、管道振動、接地、電源輔助設備(過濾、排污)等;(4)環境條件方面:環境溫度、濕度、安全性、電磁干擾、防爆等;(5)經濟因素方面:購置費、安裝費、維修費、校驗費.運行費(能耗)、使用期限、備品備件等。電磁流量計測量的液體中會含有一些氣泡,如果氣泡分布均勻,則不影響測量。然而,一旦氣泡變大,整個電極通過電極時會被遮擋,使流量信號輸入電路瞬間開路,導致輸出信號抖動 如何判斷電磁流量計的測量誤差是由被測液體中的氣泡組成的?如何處理這種情況?簡單介紹一下 當測量效果抖動時,磁場的勵磁回路電流立即被切斷。假設此時表面仍有閃爍和不穩定現象,說明大部分是由氣泡效應引起的 在確定許多氣泡影響電磁流量計的測量效果后,有必要尋找相應的處理方法。假設由于裝置的定向,許多氣泡混合到液體中。例如,如果電磁流量計安裝在管道系統的高點,儲存氣體或從外部吸入空氣,形成流量計的晃動 這是非常有用的方法來代替裝置的定位,但在很多情況下,裝置的直徑很大,或者設備的方向不容易改變。建議在電磁流量計上游安裝集氣袋和排氣閥,以清除殘余氣體,減少影響測量效果的因素,保證測量的準確性。1、電磁流量計傳感器外殼未接地出現的誤差。一般情況下,傳感器都是在金屬管道上進行安裝,并且金屬管道都是在地下,很多人因此認為對于儀表的外殼就不需要再做接地處理了。但是,這么操作卻是忽略了兩個重要問題:一方面是金屬管道都做了防腐蝕處理,金屬管道與地不能大面積接觸;二是傳感器一般都由膠皮墊連接著法蘭而與金屬管道分隔開,所以造成了傳感器的接地電阻大大增加,影響了流量計的測量結果,進而形成了誤差。另外,由于電動勢檢測一般均為幾毫伏左右,這也容易造成雜散電流對檢測結果的影響。 2、干擾環境下的輸出信號誤差分析。對于一般的電磁流量計來說,傳感器即電極與轉換器之間的連接電纜應做到盡可能短。因為傳送信號的電纜過長,電纜本身的分布電容造成的負載效應就會引起較大的測量誤差,同時也對信號受到干擾的幾率大大增加。在測量時,還要注意到走線方面,務必做到信號線與電源線分開走線,這樣就能防止產生“寄生電容”的干擾。目前很多場合已經用上了數字輸出儀表,以求獲得最為準確的測量數據。 3、強電、強磁環境下的誤差分析。流量計工作環境方面,要注意盡可能地與強電、強磁等設備的距離遠一些。由于電磁流量計在接地后,其周邊的附近如果也有一些其他的強電、強磁等設備也在接地,會造成流量計產生接地壓降,使電磁流量計接地電位變化,進而對測量結果形成誤差。另外,流量計如果是在非常強的磁場下工作,比如變壓器等強電磁設備附近使用,周邊磁場環境的強度超過電磁流量計電磁兼容的幅度時,會對測量結果的準確性造成很大的影響。1.傳感器設計 設計先進的傳感器。渦街流量計傳感器電容極板的基體在高度下成型??垢邏禾匦?,使核心元件的內部結構提升?,F代流場分析技術。對傳感器的具體結構以及安裝位置進一步改進,增強抗振性能,可以消除各個方向的干擾,攪動,使渦街在流動情況下的抗干擾能力,時域毛刺快樂,頻城戶外活動穩定。頻帶能自動跟蹤,無須電位器或撥動開關調整頻帶和靈敏度,無零漂移,量程自由設定,真正實現現場免調試。2.先進性現場總線設計 采用全數字化現場總線的智能渦街流量計。目前,研究現場總線技術是智能儀表的焦點??梢钥紤]實際需求,增加HART總線接口,該模塊采用抗干擾能力強,通信速率高,數據精確高的電路來完成傳輸數據,它真正RS .485總線通信的抗干擾能力強的特點,又具有輸出信號為二線制4~20mA的工業標準,根據各自的通訊,完成HART協議數據協議層和應用層的設計,實現HART總線通信功能.3.先進的數字信號處理方法的設計 應用更先進的數字信號處理方法,能更好地解決干擾問題,提高測量精度,進一步提高的敏感信號與渦街信號在頻譜的現場研究,當兩種信號頻率在研究同一頻段且頻率非常接近時,無法檢測到這兩種信號和消除噪聲信號的作用,對渦街信號分析的干擾等。塑料則,吸收它分頻特性好,會造成光纖精度高。同時,靠近渦街頻率的微細濾網,將影響測量精度,還需要研究函數的選擇、因此,瀑布幅頻特性和中心頻率的如何調整頻率和采樣點數確定,以及在軟件編程中如何優化算法,使量少、內存占用量少和性能小,以保證體積小。實時性好和計算精度高等問題。研究強干擾噪聲不為基礎創建噪聲的模板,考慮建立--種通用的模板,真正解決干擾下渦街信號和噪聲的判別、分離及提取問題,在傳感器條件一定的情況下,考慮利用信號處理技術擴大流量程比,提高小測量精度,全面深入研究流場噪聲以及他們對渦街流量計信號影響等。德國VSEAHM02流量計參數資料熱式氣體質量流量計是流量計發展歷史的一次重大變革,使流量測量直接轉變為質量流量的測量.根據測量時熱式質量流量計所使用的流量測量元件的加工工藝的不同,常用的傳感器探頭可以分為:熱線熱式流量傳感器、熱敏電阻式傳感器、半導體集成電路式傳感器等. 熱式流量傳感器探頭對流體運動形態的影響較小,測量范圍大,響應性能也很好,但是,這種類型的傳感器探頭對機械強度要求較高、在傳感器材料選擇上受到較大的限制;同時,加熱溫度僅能達到400~500℃.此外,由于流體中的微小顆粒容易粘附到熱線上,抗污染腐蝕能力較差,易損壞使熱線的特性發生不穩定性變化,熱線一致性差,難以進行批量生產. 半導體式傳感器探頭是以單晶硅為基體,使用硅微機械加工而成的微橋結構.半導體式傳感器探頭多用于0~25mL/min 的小流量氣體的測量,在本課題中所需要測量的流量范圍較大,不能滿足使用要求.圖2-2是典型的半導體式傳感器探頭結構. 熱電阻式傳感器主要有兩個探頭:一個流量探頭(Rp),一個溫度探頭(Rtc).目前,市場上所使用的大部分熱式氣體質量流量計傳感器探頭主要是基準鉑電阻.工作的時候,兩個探頭以一定的機械結構固定于管道中,可以通過熱源探頭上電壓信號量或者加熱功率的改變來衡量流量的變化.工作中要求兩個傳感器探頭對流量的響應盡可能的快,且要保證散熱同步,傳感器探頭的靈敏度最高,這為傳感器探頭的設計增添了一定的難度. 如圖2-3鉑電阻的典型結構所示,鉑電阻在在管道內與流體進行熱交換的過程中,鉑電阻的表面和內部鉑絲之間存在熱阻,阻礙熱量的交換.因此,必須從鉑電阻元件的選擇和傳感器結構設計兩方面進行設計,盡量減小鉑電阻內部和表面的熱阻.如果熱阻較大,熱敏電阻表面和內部就會存在很高的溫度差高,出現流量探頭和溫度探頭已經達到恒定溫差的假象,會嚴重影響控制電路正常工作,使測量的結果與管道流量的實際狀況出現較大偏差,所以減小探頭的熱阻是設計熱電阻式傳感器的關鍵.電磁流量計施工安裝注意事項1)滿管要求: 測量液體時為保證測量精確,電磁流量計的管道必須充滿液體.流體應該向上流動,當流體向下流動時,下流段的管道高于流量計.2)避免產生氣泡: 若為二相流(含氣體和液體),則會影響測量精度.要使流體中不含氣泡,閥門應該安裝在流量計下游.3)電磁流量計不能測量混相流體、分層流體、有氣泡的流體,否則測量無法精準.該項目為被測介質為上游企業污水,不存在這個問題.4)電磁流量計對直管段長度有明確要求(D為流量計內徑).對于90°彎頭、T行三通、異徑管、全開閥門等流體阻力件,離電磁流量計的電極中軸線至少5D直管段;對于不同開度閥門(比如調節閥),則上游側直管段長度需要10D;一般傳感器下游的直管段只需要3D即可.5)電磁流量計測量不同介質的混合液體時,混合點與流量計的距離至少要大于30D.6)電磁流量計安裝可以水平、垂直和傾斜安裝在管道上,測量流體方向與流量計上標識方向一致.水平安裝時,電磁流量計的電極必須水平,法蘭面與工藝管道軸線相垂直,垂直度允許偏差1°.7)電磁流量計安裝時應該避免負壓的產生,因此電磁流量計傳感器的測量管道必須充滿液體,必須有一定的背壓.電磁流量計不應該安裝在泵的進口,而應該安裝在泵的出口后面.8)電磁流量計如果必須傾斜安裝時,必須安裝在流體上升管道,在開口排放的管道安裝時,必須安裝在管道的較低處.如圖:1-入口 2-溢流口 3-入口 4–清洗口 5-流量計 6-短管 7-出口 8-排污口 9-排污閥電磁流量計是一種用來測量導電介質體積流量的儀表。為了確保電磁流量計測量的準確性以及工作的穩定性,需要定期對其做一次全面檢查,接下來開流儀表來給大家說說檢查的具體內容。1.零點檢查 整機零點檢查的技術要求是:流量傳感器測量管充滿液體且無流動,通常轉換器單獨零點為負值,數值也很??;如果其絕對值大于滿量程的5%就需要先做檢查,待確認原因后再作調整。2.連接電纜檢查 該項檢查內容是檢查信號線與勵磁線各芯導通和絕緣電阻,檢查各屏蔽層接地是否完好。3.轉換器檢查 該項檢查內容是用通用儀表以及流量計型號相匹配的模擬信號器代替傳感器提供流量信號進行調零和校準。校準包括零點檢查和調整,設定值檢查,勵磁電流測量,電流/頻率輸出檢查等。4.電磁流量計傳感器檢查 測量勵磁線圈的電阻,測量電極接液電阻以評估電極表面受污穢和襯里附著層狀況;檢查各部位絕緣電阻以判斷零件劣化程度,以估算清洗附著層前后因流動面積變化引入的流量值變化。
您如果需要德國VSEAHM02流量計參數資料的產品,請點擊右側的聯系方式聯系我們,期待您的來電