德國VSEEF0.1流量計聯系同時我們還經營:電磁流量計是一種測量導電介質體積流量的感應儀表,在進行現場監測顯示的同時,可輸出標準的電流信號,供記錄、調節、控制使用,實現檢測自動控制,并可實現信號的遠距離傳送?! ≈悄茈姶帕髁坑嬀哂芯雀?、靈敏度高、穩定性好等優點,在供水企業中有著廣泛的應用前景,特別是在大口徑、安裝環境好的工廠、居民區等場所,雖然智能電磁流量計的使用已經非常成熟。但是,仍有一些問題需要注意。一、信號傳輸問題: 電磁流量計在區域管網中運行時,可以為城市供水調度提供一定的決策信息。因此,用戶對電磁流量信號的實時性和連續性提出了更高的要求。如果智能電磁流量計能完成儀器本身信號的自動轉換和無線傳輸,減少數據采集的兼容或相互轉換等困擾,那將為企業的使用提供便利,也將為儀表的推廣應用增加更大的優勢。二、電源問題: 目前智能電磁流量計不自帶電源,造成了室外安裝不方便,一旦斷電,將造成用作結算水表的流量計數據缺失,這樣對其斷電時段缺失水量的計量與推算也就提出了新的問題。若電磁流量計能自帶電源,就能從根本上解決這一問題,也將促進其在結算水表中的推廣應用。三、防雷問題: 電磁流量計在雷雨天氣覆蓋較廣的地區防雷是個重要的工作。在嚴格做好接地、電源保護后,在空曠地區安裝的電磁流量計被雷擊的概率還是很高。所以簡單有效的辦法是提高流量計自身的防雷性能,如不能根本性解決,則應對其內部電路進行分離保護,這樣即使雷擊損壞,也能降低更換成本。為了適應儀表網絡化的發展方向,在系統設計時我們要根據實際需要為電磁流量計配備合適的通信接口.在當今單片機系統的通信中,RS232和RS485標準總線應用最為廣泛,技術也最為成熟.RS232用來連接兩臺計算機(微處理器)之間的串口通信,當我們需要一個更長的距離或者比RS232更快的速度下進行傳輸的時候,RS485就是一個很好的解決辦法.另外,RS485連接不限于僅僅連接兩臺設備.根據距離,比特率和接口芯片,我們可以用單一導線連接最多256個節點.為了使電磁流量計的應用范圍更加廣泛,我們選用RS485標準總線來實現儀表和外部系統的通信. RS485是雙向、半雙工通信協議,允許多個驅動器和接收器掛接在總線上,其中每個驅動器都能夠脫離總線.該規范滿足所有RS422的要求,而且比RS422穩定性更強.具有更高的接收器輸入阻抗和更寬的共模范圍(-7V至+12V). 接收器輸入靈敏度為士200mV,這就意味著若要識別符號或間隔狀態,接收端電壓必須高于+200mV或低于-200mV.最小接收器輸入阻抗為12k,驅動器輸出電壓為±1.5V(最小值)、+5V(最大值). 驅動器能夠驅動32個單位負載,即允許總線上并聯32個12k的接收器.對于輸入阻抗更高的接收器,一條總線上允許連接的單位負載數也較高.RS485接收器可隨意組合,連接至同一總線,但要保證這些電路的實際并聯阻抗不高于32個單位負載(375). 采用典型的24AWG雙絞線時,驅動器負載阻抗的最大值為54,即32個單位負載并聯2個120終端匹配電阻.RS485已經成為POS、工業以及電信應用中的最佳選擇.較寬的共模范圍可實現長電纜、嘈雜環境(如工廠車間)下的數據傳輸.更高的接收器輸入阻抗還允許總線上掛接更多器件. 因RS485接口具有良好的抗噪聲干擾性,長的傳輸距離和多站能力等上述優點就使其成為首選的串行接口.因為RS485接口組成的半雙工網絡一般只需二根連線,所以RS485接口均采用屏蔽雙絞線傳輸.RS485接口連接器采用DB-9的9芯插頭座,與智能終端RS485接口采用DB.9(孔),與鍵盤連接的鍵盤接口RS485采用DB.9(針). 通信接口電路如圖3.13所示,我們選用MAX485作為系統的通信接口芯片.MAX485是MAXIM公司推出的支持RS485協議的低功耗收發器,它的驅動器擺率不受限制,可以實現最高2.5Mbps的傳輸速率.它是用于RS.485通信的半雙工低功率收發器件,包含一個驅動器和一個接收器,具有輸入接收器和輸出驅動器使能管腳.使用一個半雙工連接的難點就是控制每個驅動器在什么時候被啟用,或者處于激活狀態.當一個驅動器在傳輸的時候,必須直到它完成傳輸都保持被啟用狀態,然后在一個應答節點開始響應之前切換到禁用狀態.MAX485的控制端RE和DE短接,這樣用一個信號可以控制兩種狀態:接收和發送.RE和DE為“l”時,發送端接通,數據經DI腳后,變成傳送的信號送到傳輸線.RE和DE為“0”時傳輸線上的信號經MAX485,當處于發送狀態時,數據信號經發送端DI,在輸出端A和B上交替出現高電平:當處于接收狀態時,A和B上交替的高電平信號經MAX485轉換成高低電平信號經RO輸出.在電磁流量計傳輸過程中,交替的高電平保證通信傳輸回路中始終有電流,能實現可靠通信.熱式氣體質量流量計是利用傳熱原理,即流動中的流體與熱源(流體中加熱的物質或測量管外加熱體)之間熱量交換關系來測量流量的儀表,目前主要用于測量氣體。熱式流量儀表用得最多有兩類,一是利用流動流體傳遞熱量改變測量管壁溫度分布的熱傳導分布效應的熱分布式流量計,曾稱量熱式TMF;另外--類是利用熱消散(冷卻)效應的金氏定律TMF又由于結構上檢測元件伸入測量管內,也稱插入型或侵入型。插入型的工作原理及流量計算如下: 如圖所示,插入式熱式氣體質量流量計由兩個電阻溫度計組成傳感器,一個測溫探頭,感受流體溫度T2另一個電阻溫度計由電路加熱到溫度T1用來測量流體帶走的熱量變化,亦稱測速探頭。T1高于T2。并保持△T恒定,即△T=T1-T2。當流體流經傳感器時,由于測速探頭的自身溫度T1高于測溫探頭感受的溫度即流體溫度T2,流體便帶走了測速探頭上的一部分熱量(高溫向低溫傳遞),使T1下降。電路為保持△T恒定,便增加對測速探頭的加熱功率,使△T=T1-T2恒定。流體帶走測速探頭.上多少熱量,電路便增加相應數量的電功率,兩者之間存在著一個函數關系"。設對測速探頭的加熱功率為P1,流體的質量流量為Q,則根據流體流過測速探頭時所帶走的熱量與對測速探頭的加熱功率相對應的原理,得到下列關系式: 式(1)中,PocQ 因此,可以通過測量加熱功率P,來測量帶走這部分熱量的流體的質量流量。由于帶走著部分熱量的是流體的分子,所以,測速探頭直接測量的是流體的質量流速pv,此時,只要乘上管道的橫截面積,就可以得到流體的質量流量了。由于氣體流過探頭時帶走熱量和氣體的質量流量成比例關系,也和探頭間溫差有關,流量越大,兩探頭之間溫差越小,氣體質量流量與溫差之間的聯系通過質量流速ρv建立"。 式中:Qm-質量流量,kg/s; Kv-測量頭儀表系數; a-速度分布系數; B一阻塞系數; x-干擾系數; A-儀表表體(測量管道)的內橫截面積,m² ρv一質量流速,kg/(m²·S)。 基于_上述原理,對于大管徑的流量測量來說,雖無相應的大管徑標定裝置來對流量計進行標定,但只要在標準口徑的標定裝置.上測定相應的質量流速,也就可方便地測量出大管徑中流體的質量流量了。 由熱式氣體質量流量計中于兩個傳感器都是用性能穩定的金屬鉑材料通過特殊工藝密封在316L不銹鋼管或抗酸、堿腐蝕的K2760哈氏合金或鉑套管中制成,因此極為堅固,并不會污染被測流體或受被測流體污染,且其抗腐蝕性能相當好。一體化孔板流量計是測量流量的差壓發生裝置,配合各種差壓計或差壓變送器可測量管道中各種流體的流量,孔板流量計節流裝置包括環室孔板、噴嘴等.該流量計是一個新的概念,是由專業制造廠整體組裝的(包括檢測元件、變送器及附件、工藝短管等),并可按用戶要求的系統精度標定合格的孔板流量計系統.由于該流量計現場的維護量較小,經常被忽略,而孔板流量計所配套的差壓變送器,如果不經常調校,日積月累再加上會由于一些客觀的因素而導致測量結果誤差較大.下面就給大家主要介紹下調校一體化孔板流量計測量精度的主要措施:1、溫度對流量計的影響及其修正,流體溫度變化引起密度的變化,從而導致差壓和流量之間的關系變化,其次,溫度變化引起管道內徑,孔板開孔的變化,對溫度變化的修正,就是采取溫度儀表測量現場溫度進而輸入到二次儀表中來修正溫度變化而導致的誤差。2、蒸汽質量流量的計算,一體化孔板流量計測量蒸汽時,先由差壓信號求得流量值,再由蒸汽溫度,壓力值查表得出密度,來計算蒸汽流量質量。3、孔板流量計進行逐臺標定。大家都知道,標準孔板只要設計制造參照相關標準,不需要實流標定就可以直接使用。因為流出系數可以直接由軟件算出,但是計算機計算畢竟的比較理想的,和現場環境還是有一定差別的,所以,為了保證測量精度,建議對每臺流量計進行實流標定,把標定出的流出系數和計算結果進行比對,算出差值,進行修正。4、可膨脹性校正??装辶髁坑嫓y量蒸汽,氣體流量時,必須進行流體的可膨脹性校正,具體校正系數可以參照節流裝置設計手冊?! ?、雷諾數修正,一體化孔板流量計的流量系數和雷諾數之間有確定的關系,當質量流量變化時,雷諾數成正比變化,因而引起流量系數的變化。渦輪流量計采用雙排液晶現場顯示,具有機構緊湊、讀數直觀清晰、可靠性高、不受外界電源干擾、抗雷擊、成本低等明顯優點。廣泛用于測量封閉管道中與不銹鋼1Cr18Ni9Ti、2Cr13及剛玉Al2O3、硬質合金不起腐蝕作用,且無纖維、顆粒等雜質?! u輪流量計結構為防爆設計,可以顯示流量總量,瞬時流量和流量滿度百分比。電池采用長效鋰電池,單功能積算表電池使用壽命可達5年以上,多功能顯示表電池使用壽命也可達到12個月以上。渦輪流量計的特點: 1、準確度高,一般可達±1%R、±0.5%R,高精度型可達±0.2%R?!?、重復性好,短期重復性可達0.05%~0.2%,正是由于具有良好的重復性,如經常校準或在線校準可得到較高的準確度,在貿易結算中是優先選用的流量計?!?、輸出脈沖頻率信號,適于總量計量及與計算機連接,無零點漂移,抗干擾能力強?! ?、可獲得很高的頻率信號(3-4kHz),信號分辨力強?! ?、范圍度寬,中大口徑可達1:20,小口徑為1:10?! ?、結構緊湊輕巧,安裝維護方便,流通能力大 7、適用高壓測量,儀表表體上不必開孔,易制成高壓型儀表?! ?、可制成插入型,適用于大口徑測量,壓力損失小,價格低,可不斷流取出,安裝維護方便?! u輪流量計可以顯示的流量單位眾多,有立方米,加侖,升,標準立方米,標準升等,可以設定固定壓力、溫度參數對氣體進行補償,對壓力和溫度參數變化不大的場合,可使用該儀表進行固定補償積算。為促使電磁流量計實際使用壽命增加,把故障實際發生率把控至最低范圍,務必強化對電池流量計日常維護管理。一是,變送裝置管內壁部位,需定期清理好結垢層,對絕緣襯里優良絕緣性起到良好保障作用;二是,生產運行期間,定期檢查儀表,屬于保證后續濕氣與水下運動關鍵,特別是檢查接線口好儀表端蓋處密封性,以去吧儀表內部不會進入水與濕氣;為確保儀表有極高的密封性,應時刻在殼體蓋螺紋位置涂好潤滑黃油,且需防止因碰撞而受損;三是,流量計實際運行期間,儀表零點務必要定期標定好,確保電磁流量計可實現有效接地;四是,電磁流量計實際使用部門應當為每個技術人員建立起短期與長期的培訓計劃,設定出具體的培訓內容與要求,要根據相關技術人員的實際技能情況,制定有針對性的培訓計劃。從而促進儀表技術人員對電磁流量計實際期間故障問題的實時檢查分析及排除能力,強化對電磁流量計日常的維修處理,以確保更好地使用電磁流量計。 渦街流量計與流體密度無關,在測流量時,考慮氣體或蒸汽溫度、壓力變化對密度的影響,需不需要進行密度、溫度壓力補償,從以下幾個方面進行探討。(1)測量介質為液體,且流量以質量流量表示。由于測液體流量時,流量指示一般為質量或重量流量,漩渦流量計由漩渦頻率-流速-體流量X密度=質量流量,當指示值以質量流量表示時,刻度系數中包含密度的因素,所以密度變化對指示值有影響,必須進行密度修正。(2)測量介質為氣體,且以標準狀態下體積表.示。 氣體流量一般習慣均以標準狀態下體積表示,刻度為Nm³/h,但工作時由漩渦頻率→流速→工作狀態體積再折算成標準狀態下體積。作為一臺漩渦流量計,一旦折算系數確定了,那么流體只有處在一個工作壓力、溫度下流量指示值才準確,這個溫度就是設計溫度,這個壓力就是設計壓力。一旦工作條件偏離了設計值也會帶來誤差,所以必須考慮溫度、壓力補償,但不考慮密度補償。(3)測量介質為氣體,且以質量流量表示。 對漩渦流量計,由漩渦頻率→疏速→工作狀態體積流量→設計狀態體積流量→標準狀態體積流量,再乘以標準狀態下氣體的密度而得到質量流量。 顯然,以質量流量表示的漩渦流量計,必須進行氣體組成變化帶來的密度變化的修正,同時工況變化,又增加一個由工作狀態折算到設計狀態的折算系數。這個折算系數是動態的,也就是溫度、壓力補償問題。經過以上分析得出以下結論:(1)無論測氣體或液體,若渦街流量計流量以工作狀態體積流量表示時,沒有密度及溫度、壓力補償問題。(2)無論測氣體、蒸汽或液體流量,以質量流量表示時,液體一般溫度變化范圍大,流體密度變化均需進行密度修正,對氣體過熱蒸汽還需進行溫度、壓力補償。(3)以標準體積流量表示時,流量計必須進行溫度、壓力補償,無需進行氣體密度補償。渦街流量計是依據流體力學振動現象中振動頻率與流速的對應關系工作。它對管道流速分布畸變、流動脈動及旋轉流十分敏感,同時由于其感.測元件為壓電晶體,各種機械振動對輸出信號干擾較大,僅表抗振性差。因此現場安裝條件要求較高。 為了達到測量精度,渦街流量計必須保證一定的前后直管段,并盡量避免在靠近調節閥、半開閥和.截止閥后安裝流量計;測壓點和測溫點應分別在下游側距流量計中心線3.5D~5.5D和6D-8D;。 渦街流量計的表體安裝不良,如接管偏大、偏小、偏移有臺階)或墊片突入管道都會引起測量誤差。配管內徑一般應等于或略大于流量計的內徑。如配管的實際內徑略小于流量計的內徑5%以內),雖不會影響僅表的固有K系數,但因流通面積突變引起表觀流速變化而產生附加測量誤差,這可以通過修正K系數來補償。修正后的儀表系數為K"=K(D2/D1)2式中:Dt-儀表實際內徑;D2-配管實際內徑。 當測量容易汽化的液體或工作條件接近臨界狀態的液體時,為防止氣穴現象出現,設計安裝時必須確認管道內的最低壓力P',這樣才能保證渦街流量計正常工作。p由下式計算:p≥2.7△p+1.3po△p≈1.1x10-6ρv2 式中:p-管道內流體絕對壓力,MPa;△p-流體在.發生體前后的壓差,MPa;po-在工作溫度下流體的飽和蒸汽壓,MPa;ρ--工作條件下流體的密度,kg/m³,V-流動流體的流速,m/s.儀表使用中還要注意以下問題:①安裝渦街流量計的位置要遠離動力設備和變化頻繁的閥門,如管線振動較大,應在流量計前、后2D處加裝固定支架以咸振;②如管道流體的流速不穩,可考慮在管線上增加穩壓裝置或整流器來消除流速分布的不均勻現象;③由于壓電晶體的靈敏度隨溫度升高而大幅度下降,應避免在測量高溫介質(≤250℃),特別是高低溫頻繁變化的介質中使用;④流量計的安裝位置應避開較強的熱源、電場及磁場,盡量選擇較好的工作環境德國VSEEF0.1流量計聯系根據SH/T3104-2000《石油化工儀表安裝設計規范》中規定渦街流量計的安裝要求如下:(1)測量液體時渦街流量計應安裝于被測介質完全充滿的管道上。(2)渦街流量計在水平敷設的管道上安裝時,應充分考慮介質溫度對變送器的影響。(3)渦街流量計在垂直管道上安裝時,應符合以下規定:①測量氣體時,流體可取任意流向②測量液體時,液體應自下而向上流動。(4)渦街流量計下游應具有不小于5D(流量計直徑)的直管段長度,渦街流量計上游直管段長度應符合以下規定:①當工藝管道直徑大于儀表直徑(D)需縮徑時,不小于15D;②當工藝管道直徑小于儀表直徑(D)需擴徑時,不小于18D;③流量計前具有一個90°彎頭或三通時,不小于20D;④流量計前具有在同一平面內的連續兩個90°彎頭時,不小于40D;⑤流量計前具有不同平面內的連接兩個90°彎頭時,不小于40D;⑥流量計裝于調節閥下游時,不小于50D;⑦流量計前裝有不小于2D長度的整流器,整流器前應有2D,整流器后應有不小于8D的直管段長度。(5)被測液體中可能出現氣體時,應安裝除氣器。(6)渦街流量計應安裝于不會引起液體產生氣化的位置。(7)渦街流量計前后直管段內徑與流量計內徑的偏差應不大于3%。(8)對有可能損壞檢測元件(旋渦發生體)的場所,管道安裝的渦街流量計應加前后截止閥和旁路閥,插入式渦街流量計應安裝切斷球閥。(9)渦街流量計不宜安裝在有震動的場所。熱式氣體質量流量計是利用傳熱原理,即流動中的流體與熱源(流體中加熱的物質或測量管外加熱體)之間熱量交換關系來測量流量的儀表,目前主要用于測量氣體。熱式流量儀表用得最多有兩類,一是利用流動流體傳遞熱量改變測量管壁溫度分布的熱傳導分布效應的熱分布式流量計,曾稱量熱式TMF;另外--類是利用熱消散(冷卻)效應的金氏定律TMF又由于結構上檢測元件伸入測量管內,也稱插入型或侵入型。插入型的工作原理及流量計算如下: 如圖所示,插入式熱式氣體質量流量計由兩個電阻溫度計組成傳感器,一個測溫探頭,感受流體溫度T2另一個電阻溫度計由電路加熱到溫度T1用來測量流體帶走的熱量變化,亦稱測速探頭。T1高于T2。并保持△T恒定,即△T=T1-T2。當流體流經傳感器時,由于測速探頭的自身溫度T1高于測溫探頭感受的溫度即流體溫度T2,流體便帶走了測速探頭上的一部分熱量(高溫向低溫傳遞),使T1下降。電路為保持△T恒定,便增加對測速探頭的加熱功率,使△T=T1-T2恒定。流體帶走測速探頭.上多少熱量,電路便增加相應數量的電功率,兩者之間存在著一個函數關系"。設對測速探頭的加熱功率為P1,流體的質量流量為Q,則根據流體流過測速探頭時所帶走的熱量與對測速探頭的加熱功率相對應的原理,得到下列關系式: 式(1)中,PocQ 因此,可以通過測量加熱功率P,來測量帶走這部分熱量的流體的質量流量。由于帶走著部分熱量的是流體的分子,所以,測速探頭直接測量的是流體的質量流速pv,此時,只要乘上管道的橫截面積,就可以得到流體的質量流量了。由于氣體流過探頭時帶走熱量和氣體的質量流量成比例關系,也和探頭間溫差有關,流量越大,兩探頭之間溫差越小,氣體質量流量與溫差之間的聯系通過質量流速ρv建立"。 式中:Qm-質量流量,kg/s; Kv-測量頭儀表系數; a-速度分布系數; B一阻塞系數; x-干擾系數; A-儀表表體(測量管道)的內橫截面積,m² ρv一質量流速,kg/(m²·S)。 基于_上述原理,對于大管徑的流量測量來說,雖無相應的大管徑標定裝置來對流量計進行標定,但只要在標準口徑的標定裝置.上測定相應的質量流速,也就可方便地測量出大管徑中流體的質量流量了。 由熱式氣體質量流量計中于兩個傳感器都是用性能穩定的金屬鉑材料通過特殊工藝密封在316L不銹鋼管或抗酸、堿腐蝕的K2760哈氏合金或鉑套管中制成,因此極為堅固,并不會污染被測流體或受被測流體污染,且其抗腐蝕性能相當好。德國VSEEF0.1流量計聯系1、電磁流量計傳感器外殼未接地出現的誤差。一般情況下,傳感器都是在金屬管道上進行安裝,并且金屬管道都是在地下,很多人因此認為對于儀表的外殼就不需要再做接地處理了。但是,這么操作卻是忽略了兩個重要問題:一方面是金屬管道都做了防腐蝕處理,金屬管道與地不能大面積接觸;二是傳感器一般都由膠皮墊連接著法蘭而與金屬管道分隔開,所以造成了傳感器的接地電阻大大增加,影響了流量計的測量結果,進而形成了誤差。另外,由于電動勢檢測一般均為幾毫伏左右,這也容易造成雜散電流對檢測結果的影響。 2、干擾環境下的輸出信號誤差分析。對于一般的電磁流量計來說,傳感器即電極與轉換器之間的連接電纜應做到盡可能短。因為傳送信號的電纜過長,電纜本身的分布電容造成的負載效應就會引起較大的測量誤差,同時也對信號受到干擾的幾率大大增加。在測量時,還要注意到走線方面,務必做到信號線與電源線分開走線,這樣就能防止產生“寄生電容”的干擾。目前很多場合已經用上了數字輸出儀表,以求獲得最為準確的測量數據。 3、強電、強磁環境下的誤差分析。流量計工作環境方面,要注意盡可能地與強電、強磁等設備的距離遠一些。由于電磁流量計在接地后,其周邊的附近如果也有一些其他的強電、強磁等設備也在接地,會造成流量計產生接地壓降,使電磁流量計接地電位變化,進而對測量結果形成誤差。另外,流量計如果是在非常強的磁場下工作,比如變壓器等強電磁設備附近使用,周邊磁場環境的強度超過電磁流量計電磁兼容的幅度時,會對測量結果的準確性造成很大的影響。
您如果需要德國VSEEF0.1流量計聯系的產品,請點擊右側的聯系方式聯系我們,期待您的來電