德國VSEAP1流量計規格同時我們還經營:1.孔板流量計前后的直管段必須是直的,不得有肉眼可見的彎曲。2.安裝節流件用得直管段應該是光滑的,如不光滑,流量系數應乘以粗糙度修正稀疏。3.為保證流體的流動在節流件前1D出形成充分發展的紊流速度分布,而且使這種分布成均勻的軸對稱形,所以①直管段必須是圓的,而且對節流件前2D范圍,其圓度要求其甚為嚴格,并且有一定的圓度指標。具體衡量方法:A.孔板流量計前OD,D/2,D,2D4 個垂直管截面上,以大至相等的角距離至少分別測量4個管道內徑單測值,取平均值D.任意內徑單測量值與平均值之差不得超過±0.3%B.在節流件后,在OD和2D位置用上述方法測得8個內徑單測值,任意單測值與D比較,其最大偏差不得超過±2%②節流件前后要求一段足夠長的直管段,這段足夠長的直管段和節流件前的局部阻力件形式有關和直徑比β有關,見表1(β=d/D,d為孔板開孔直徑,D 為管道內徑)。4.孔板流量計上游側第一阻力件和第二阻力件之間的直管段長度可按第二阻力件的形式和β=0.7(不論實際β值是多少)取表一所列數值的1/25.孔板流量計上游側為敞開空間或直徑≥2D大容器時,則敞開空間或大容器與節流件之間的直管長不得小于30D(15D).若節流件和敞開空間或大容器之間尚有其它局部阻力件時,則除在節流件與局部阻力件之間設有附合表1上規定的最小直管段長1外,從敞開空間到節流件之間的直管段總長也不得小于30D(15D)。超聲波液位計基本要求 超聲波液位計換能器發射脈沖超聲波時,都有一定的發射開角。從換能器下沿到被測介質表面之間,由發射是超聲波波束所輻射的區域內,盡可能有障礙物,因此安裝時應盡可能避開罐內設施,如:人梯、限位開關、加熱設備、支架等。如果有障礙物干擾情況下,安裝時需要進行"虛假回波存儲"。另外須注意超聲波波束不得與加料料流相交?! “惭b儀表時還要注意:最高料位不得進入測量盲區;儀表距罐壁必須保持一定的距離;儀表的安裝盡可能使換能器的發射方向與液面垂直。安裝在防爆區域內的儀表必須遵守國家防爆危險區的安裝規定。本安型的外殼采用鋁殼。本安型儀表可安裝在有防爆要求的場合,儀表必須接地。測量的基準是探頭的下邊沿。1、盲區 2、空倉(最大測量距離) 3、 最大量程 4、測量范圍注:使用超聲波物位計時,務必保證最高料位不能進入測量盲區。安裝位置 在安裝超聲波物位計的時候,注意儀表和容器壁至少保持200mm的距離。1、基準面2、容器中央或對稱軸 對于錐形容器,且為平面罐頂,儀表的最佳安裝位置是容器頂部中央,這樣可以保證測量到容器底部。常見安裝位置的正誤1、錯誤:換能器應與被測介質表面垂直。2、錯誤:儀表被安裝在拱形或圓形罐頂,會造成多次反射回波,在安裝時應盡可能避免安裝在容器中央。3、正確1、錯誤:不要將儀表安裝于入料料流的上方,以保證測量的是介質表面而不是入料料流。2、正確 注意:室外安裝時應采取遮陽、防雨措施。攪拌 當罐中有攪拌時,超聲波液位計安裝盡量遠離攪拌器。安裝后要在攪拌狀態下進行"虛假回波存儲",以消除攪拌葉片所產生的虛假回波影響。若由于攪拌產生泡沫或翻起波浪,則應使用導波管安裝方式。泡沫 由于入料、攪拌或容器內其他過程處理,會在某些液體介質表面形成泡沫,衰減發射信號。如果泡沫造成測量誤差,應將傳感器安裝在導波管內,或使用雷達液位計。導波雷達液位計的測量不受泡沫的影響,是這種應用的最佳選擇。氣流 如果容器內有很強的氣流,例如:室外安裝,而且風很大,或容器內有空氣渦流,您應該將傳感器安裝在導波管內,或使用雷達液位計或導波雷達液位計。1、旋進旋渦流量計無機械可動部件,耐腐蝕,穩定可靠,壽命長,長期運行無須特殊維護;2、采用16位電腦芯片,集成度高,體積小,性能好,整機功能強;3、智能型流量計集流量探頭、微處理器、壓力、溫度傳感器于一體,采取內置式組合,使結構更加緊湊,可直接測量流體的流量、壓力和溫度,并自動實時跟蹤補償和壓縮因子修正;4、采用雙檢測技術可效地提高檢測信號強度,并抑制由管線振動引起的干擾;5、采用漢字點陣顯示屏,顯示位數多,讀數直觀方便,可直接顯示工作狀態下的體積流量、標準狀態下的體積流量、總量,以及介質壓力、溫度等參數;6、采用EEPROM技術,參數設置方便,可*保存,并可保存長達一年的歷史數據;7、轉換器可輸出頻率脈沖、4-20mA模擬信號,并具有RS485接口和HART協議,可直接與微機聯網,傳輸距離可達1.2Km;8、配合本公司的FM型數據采集器,可通過因特網或者網絡進行遠程數據傳輸;9、壓力、溫度信號為變送器輸入方式,互換性強;10、旋進旋渦流量計整機功耗低,可用內電池供電,也可外接電源。 渦街流量計是基于流體力學中著名的“卡門渦街”研制的。在流動的流體中放置- -非流線型柱形體,稱旋渦發生體,當流體沿旋渦發生體繞流時,會在渦街發生體下游產生兩列不對稱但有規律的交替旋渦列,這就是所謂的卡門渦街,如圖1所示。 大量的實驗和理論證明:穩定的渦街發生頻率ƒ與來流速度v1及旋渦發生體的特征寬度d有如下確定關系叫: 式中St為斯特羅哈數,與雷諾數和d相關。 當雷諾數Re在一定范圍內(3 X102~2 X105)時(4],St為一常數,對于三角柱形旋渦發生體約為0.16 雷諾數的定義為 式中S為管道的橫截面積。 由高精度氣體渦街流量計的測量原理可知,通過測量旋渦發生頻率僅能得到旋渦發生體附近的流速vI,由式(3)可知在橫截面積一定的情況下,流體的流量Q與流體的平均流速v成正比,因此要精確計量流體的流量必須找到`v與v1的對應關系。 根據流體力學理論,在充分發展的湍流狀態下,流體的速度分布有如下關系式川: 式中:vp為到管壁距離為y的P點的速度;y為點到管壁處的距離;Vmax:為管道中的最大流速,通常取管道中心的速度;R為管道的半徑;n為雷諾數的函數。 表1中給出了部分雷諾數與n的對應關系。 由于旋渦發生體的位置固定,因此當雷諾數一定時v1與`v有固定的比例關系換言之,當雷諾數Re變化時,二者的比值也發生變化, 圖3給出了不同雷諾數下充分發展的湍流的流速分布,如圖所示Re越大,流速分布越平滑,即旋渦發生體附近的流速越接近平均流速,故ƒ( Re)應為單調遞減函數。圖4給出了3臺50mm口徑,寬度14 mm三角形旋渦發生體的氣體渦銜流量計,在20℃,一個標準大氣壓下,不同雷諾數下的K值曲線。如圖所示實驗數據與理論分析基本一致,因此渦銜流量計的測量原理即決定了儀表系數的非線性特性。若要提高渦街流量計的計量精度,必須針對不同的流速分布對K值進行修正。電磁流量計在運行中使用過程中,偶爾出現波動大,信號弱或突然下降等情況時原因1.由于水煤漿在磨制過程中,產生的鐵磁性物質,隨流過電磁流量計時,吸附于電極表面使其絕緣變壞或被短路,造成信號送不出去,而導致測量誤差. 處理方法;在平時停車檢修期間要認真檢查,發現測量導管內壁有沉積的污垢,應及時清洗和擦拭電極,測量導管襯里如果出現鼓包現象,應及時更換,檢查信號插座,如果有腐蝕,應予以清理或更換.原因2.在水煤漿測量過程中,煤漿泵出口壓力的不穩定和較大波動,對電磁流量計的在線測量也會造成較大的影響,尤其在低流速狀態和煤漿泵臟物堵塞等因素同時存在時,水煤漿流場變化波動且不穩定,流體脈動大,使電磁流量計測量信號不穩定. 處理方法:我公司常用做法是將電磁流量計安裝在氣化爐框架頂部,延長流量計的前直管段,以解決煤漿泵加壓泵工作時造成的脈動.原因3.在測量過程中,煤漿中的固體顆粒(或液體中氣泡)摩擦電極表面,電極表面電化學電勢突然變化,輸出信號流量將出現尖峰脈沖狀噪聲,如果兩個電極材質、結構表面狀態存在差異,所產生的共模干擾,流量信號送到轉換器差分放大器輸入端放大,于是就出現了流量計輸出信號的大幅波動. 處理方法:應盡量控制煤漿顆粒在50μm-55μm,減小顆粒噪聲對測量穩定性的影響.同時應在工藝控制水煤漿的濃度比例,使其均勻穩定.原因4.電磁流量計的信號比較弱,在滿量程時只有2.5~8mv,流量很小時,輸出只有幾微伏,外界略有干擾,就會影響儀表精度. 處理方法:查看檢測器的測量管、外殼、屏蔽線以及轉換器、二次儀表是否可靠接地,接地電阻是否小于10歐,電纜屏蔽層是否有損壞.優點:(1)熱式氣體質量流量計可被測量的流體管道口徑范圍廣.能夠應用在各種口徑的管道流量測量,從小、中口徑到特大口徑管道都可以,口徑可達 9000mm.(2)流速測量范圍廣.可測量 0.02m/s~480m/s 范圍內的流體流速.(3)測溫范圍和耐壓范圍很寬.待測氣體的溫度高達 900℃,可用于各種高溫過程氣體的測量,最高可以在 70MPa 的壓力下進行測試.測量過程中不需要溫度和壓力補償.所以在較大直徑管道、較小流速、微小流量、測量流量浮動范圍較大時,具有一定的優勢.(4)可保證較高的測量精度.一般的熱式氣體質量流量計都屬中等精度測量范圍,其中部分儀表,如插入式、電磁式,可以達到高精度測量.國外進口的高精度儀表滿量程誤差可以達到±1%.(5)寬量程比.量程比可以達到 1000:1,且能保持精度要求.(6)可測量混合氣體.(7)機械設計簡單,容易安裝和調試,維修簡單,防振動.插入式只需要在管道上焊接法蘭盤即可,管段式只需要進行管道轉接,安裝和操作方便.(8)不需要溫度和壓力補償.缺點:(1)響應速率慢.由于熱式氣體質量流量計是依靠傳熱原理設計,而熱量交換過程與加熱溫度探頭和流體的熱傳導效率密切相關,需要一定的時間來完成換熱過程,一般的相應時間為 2~5s;性能優越的流量計響應時間為 0.5s;甚至有些響應時間更慢.(2)精度易受流體組分影響.當被測流體為混合氣體時,由于混合氣體組分的變化,氣體密度,粘度,熱導率都會受到直接影響,使測量值發生較大誤差而導致最后的流量計算結果產生誤差.(3)在小流量測量中,熱源探頭的溫度高于流體溫度,導致熱源探頭向流體傳導熱量,影響流體和熱源探頭的溫度差,影響測量精度.1.合理安裝 換能器是組成超聲波流量計的主要結構,如果換能器安裝不合理,必然會影響超聲波流量計的應用效果。因此,在具體安裝中,必須充分結合實際情況,綜合考慮換能器的安裝位置及打開方式,尤其是在選擇位置上,既要保證換能器可以和上、下直管緊密連接,也要盡量避開變頻調速器、電焊機等干擾較大的位置。安裝方式有三種,一種是對貼安裝,一種是V形安裝,另一種是Z形安裝。如果選擇了多普勒式超聲波流量計,則在安裝中盡量選擇對貼式安裝方法。如果選擇了時差式超聲波流量計,既可以選擇V形安裝方式,也可以選擇Z形安裝方式。多數情況下,如果管徑小于200mm,宜采用V形安裝方式。如果管道直徑大于200mm,則要選擇Z形安裝方式。針對既能采用Z形安裝方式,也可以采用其他安裝方式的,要盡量選擇Z形方式,因為,Z形方式安裝的換能器超聲波信號最強,運行過程也比較穩定。2.及時校核 雖然超聲波流量計具有很強的抗干擾性和抗污染性,但如果長時間使用,也會影響運行的精度,為解決這一問題,可在超聲波流量計中配置一臺同類型的便攜式超聲波流量計,對現場儀表進行定期校核。堅持一裝一校核的原則,保證超聲波流量計選型合理、安裝調試達標,以便對每臺安裝之后的超聲波流量計進行合理校核。此外,還要在線對超聲波流量計發生的突變情況進行校核,通過便攜式超聲波流量計開展及時校核,以找到發生突變的根源,以便開展有針對性的檢修和處理。3.定期開展維護 和傳統流量計相比,超聲波流量計的維護量比較小,尤其是對外貼式安裝換能器而言,要保證安裝之后沒有水壓損失,也不存在潛在漏水,定期檢查超聲波流量計中的換能器是否存在松動情況,和管道之間的連接情況是否良好,發現問題及時處理,保證超聲波流量計能夠持續穩定運行。德國VSEAP1流量計規格金屬管浮子流量計是由浮子、錐管、檢測器等部件組成。浮子組件裝有磁鋼,其作用把是浮子的位移信號以磁信號的形式傳輸給檢測器。檢測器把這一檢測到的信號再以電信號的形式遠距離傳輸,并現場指示瞬時流量值。浮子流量計具有小流量值、范圍度大、不用現場調試的特點。其結構簡單、運動部件磨損小、使用壽命長、壓力損失小、安裝方便、維修量小、使用周期長、可遠距離傳輸流量信號,與計算機連用可實現集中管理。 但也存在不足,如對于高黏度、大流量、以及兩相以上流體不能測量?! 〗饘俟芨∽恿髁坑媽崿F流量測量的理論基礎是“定壓將,變面積“原理。在流動的流體中放置一個軸線與流向平行的浮子,見圖1. 金屬管浮子流量計本體可以用兩端法蘭、螺紋或軟管與測量管道連接。當流體自下而上流入錐管時,被浮子截流,這樣在浮子上、下游之間產生壓力差,浮子在壓力差的作用下.上升,這時作用在浮子上的力有三個:流體對浮子的動壓力、浮子在流體中的浮力和浮子自身的重力。只有當流體對浮子的動壓力與浮子在流體中所受的浮力之和等于浮子的重力時,浮子就平穩地浮在某一位置上。 大量實驗證明,在一定雷諾數的范圍內,對于同一口徑金屬管浮子流量計,流體流速的大小與浮子的形狀有關。對于給定的浮子流量計,浮子大小和形狀已經確定,因此它在流體中的浮力和自身重力都是已知是常量,唯有流體對浮子的動壓力是隨來流流速的大小而變化的。因此當來流流速變大或變小時,浮子將作向上或向下的移動,相應位置的流動截面積也發生變化,流動截面積與浮子的.上升高度成比例,即浮子的某一高度代表流量的大小。浮子上下移動時,以磁耦合的形式將位置傳遞到外部指示器,直到流速變成平衡時對應的速度,浮子就在新的位置上穩定。對于-臺給定的浮子流量計,浮子在測量管中的位置與流體流經測量管的流量的大小成一--對應關系。計量管路流量量程變化是實際使用中經常遇到的情況, 特別是直接對沒有儲氣設備用戶供氣的計量更是如此。我國天然氣、煤氣的大部分消耗是供給城市作民用燃氣的,一般日負荷的變化都比較大,流量的量程變化也就較大。常用孔板流量計的量程比一般為3:1,對于大量程比的場合,一般采用以下三種方法解決。(1)將大流量分段多路并聯組合進行測量.在流量量程變化較大的場合,往往采用不同管徑的計算管道并聯組合,通過計量管路的組合切換來適應流量的變化;這是目前較為常用的方法。(2)更換孔板片改變值進行測量.在不改變標準孔板節流裝置和差壓計的情況下,通過更換不同開孔直徑的孔板,改變孔徑比的方法來實現流量測量。適用于較長時間的季節性流量較大幅度改變或供氣量的突然變化致使差壓計超出規定使用范圍的情況。(3)用一臺孔板流量計并聯不同量程差壓計進行測量.采用同一臺孔板流量計的一次裝置,并聯兩臺或兩臺以上不同量程的差壓計進行切換測量。日常工作中如果正確保養渦街流量計,可以有效延長其使用壽命,并減少故障發生,具體方法如下:1)渦街流量計由于K系數的確定在渦街的整個環節中非常重耍,K系數的準確與否直接影響著回路的準確度,儀表更換零部件以及工藝管道的磨損等情況,均可能影響K系數.而很多化工廠又缺少標定的手段與能力,只能送出標定,受工藝運行的影響,要從管道上拆下渦街送出要5、6天的標定時間,工藝方面很難滿足,從而無法確定K系數。今年,通過流量儀表間的改造,雖已經具備了較小口徑的渦街標定條件,但對于較大口徑的渦街仍然無能為力,以后應注意使用渦街的現場標定方法,孔板流量計使用標準頻率以及便攜式超聲波流量計,測出管道中的瞬時流量以及傳感器的脈沖輸出頻率,現場計算K系數。2)渦街流量計應定期清洗渦街流量計的探頭,檢查中曾發現,個別探頭檢測孔已被污物堵塞,甚至被塑料布裹住,影響了正常測量。3)渦街流量計定期檢查接地和屏蔽情況,消除外界干擾。有時候指示問題是由于受到干擾所至4)渦街流量計安裝環境潮濕的探頭.應定期烘干一次,或作防潮處理。由于探頭本身并末作防潮處理,受潮之后影響運行。5)渦街流量計的數據資料的管理應引起足夠的重視,孔板流量計以利于日后的工作。電磁流量計等節點設備和站內PC機間的通信采用異步串行通訊控制規程,并采用地址位喚醒握手協議.因此在協議中規定了傳地址和傳數據兩種不同的幀格式,如圖4.4所示.地址幀和數據幀都有11位,其中第l位和最后l位相同,分別為起始位和停止位,緊接起始位的是8位數據位,第9位為標志位,用來區分所發送/接受的幀信息是地址幀還是數據幀.第9位為1時,表示PC機發送/接受的是“地址幀":第9位為0時,表示主機發送/接受的是"數據幀".命令幀與校驗和的發送格式與數據幀相同,因此可由數據幀演化得到.德國VSEAP1流量計規格電磁流量計外殼用不銹鋼,測量管內壁用聚四氟乙烯,轉換器封閉在一個長方體金屬殼內,內部電路板上有一四位數的數據盤,可作測量值的指示器。變送器與轉換器之間通過兩根電纜連接,變送器安裝在管道上,轉換器固定在旁邊的框架上。這種流量計無論零點還是量程都不能白行調整,只能在指定廠家標定,使用很不方便。該流地計投用運行還未到-年,指示便出現了故障經檢查發現變送器電路板發生腐蝕,有幾只晶體三極管管腳已經銹斷,當時并沒有引起我們足夠的重視,只是更換幾只三極管便又重新裝上,這樣修復后該表又運行幾個月,然后又失去指示。當我們再次檢查該表時,發現變送器的電路板及電纜已全部腐蝕掉,于是該表報廢。這才引起我們的警覺,原來因該表安裝的地方離高壓甲銨泵及高壓氨泵太近,停車時排放的及平時泄漏的氨和甲銨以及夾帶的氨氣常環繞在該表周圍,致使該表一直工作在腐蝕性環境中,加上我們只注意該表的耐腐蝕特點,而忽略該表的脆弱性,最終導致該表的損壞。 在安裝時,為防止腐蝕性氣體侵入電子室,在接線盒蓋邊緣及電纜接頭處全部用硅橡膠密封,并用水電兩用膠帶加以封固,以達到防腐的目的。該表投用后運行一年多時間,便再次發生了同樣故障,變送器電路板及電纜又被腐蝕,表又損壞。 事故的不斷發生,使我們對腐5蝕問題進行仔細的思考,為什么變送器密封那么好還會腐蝕?而與變送器僅半米之遙的轉換器卻安然無恙?經過仔細的觀察和分析,發現安裝變送器的管道因流速高,一直在不停地輕微震動,密封膠很容易松動而脫落,不停的震動又為氨氣的侵入增加了助動力,而固定在框架上的轉換器,由于沒有震動,各密封口完好,因此沒有腐蝕。 找到了出故障的原因,也就找到了排除故障的措施。這種電磁流量計較前兩種要先進得多,它采用微處理器技術,在轉換器上有一雙排液晶顯示器,在顯示器下邊有三個按鈕,通過它們可以對流量計的參數進行組態設定,并可翻看流量計的有關參數設置。該表具有比較強的外部通信接口能力,能以模擬和數字方式與其它外設通信,并帶有很強的自診斷功能,參數的輸入及選擇以數據直接輸入及主副菜單選擇方式進行,可方便地進行零點調整和量程設定,操作十分方便。為了保證這塊表能安全運行,我們在吸取前兩次教訓的基礎上,采取另-種防腐措施即吹氣防腐法。這種方法的原理是設法使變送器接線盒內純凈氣體壓力增大,致使有害氣體不能侵入接線盒內,從而達到防腐目的。具體方法是在電磁流量計的電子室上打兩個小孔,一個進氣,一個排氣,然后接上儀表空氣,讓空氣保持微小流量,電子室內純凈氣的壓力高于大氣壓,氣流只能從孔隙由內向外流動,從而阻止有害氣體的侵入,起到防腐作用。該表投入運行后,效果一直很好,在時隔兩年的1994年大修中,打開電子室檢查,沒有發現腐蝕,可見吹氣防腐確實起到了作用。
您如果需要德國VSEAP1流量計規格的產品,請點擊右側的聯系方式聯系我們,期待您的來電